Skip to content

Жизнь в стиле V.I.P.

  • Карта сайта

Радиоактивные вещества

28.06.2020 by admin

1. Наибольшую опасность радиоактивные вещества после выпадения на местность представляют в : первые часы

2. Проникающая радиация — это поток гамма лучей и нейтронов

3. Световое излучение — это поток лучистой энергии, включающей ультрафиолетовые, видимые и инфракрасные лучи

4. Наибольшую проникающую способность имеет нейтронное излучение

5. Удаление радиоактивных веществ с зараженных объектов называется дезактивация

6.По действию на организм человека зарин, зоман, VX-газы относятся к отравляющим веществам нервно-паралитическим

7. Поражающим фактором ядерного оружия не является резкое изменение состава, атмосферного воздуха

8. Химическое оружие — это оружие массового поражения, действие которого основано на токсических свойствах некоторых химических веществ

9. Предназначение бактериологического оружия массовое поражение живой

10. К высокоточному оружию относятся управляемые авиационные бомбы

11. Первыми препаратами, применяемыми при поражении радиоактивными веществами, являются препараты иода

12. Самым опасным для человека является гамма-излучение .

13. Внутреннее облучение при воздействии радиоактивных веществ связано с применением в пище зараженных продуктов и воды

14. Под влиянием ионизации в организме человека возникают биологические процессы, приводится к нарушению жизненных функций отдельных органов и развитию лучевой болезни

15. Проникающая радиация-это поток гамма лучей и нейтронов

16. Степень, глубина и форма лучевых поражений зависит от поглощенной дозы

17. При попадании радиоактивных веществ внутрь организма необходимо промыть желудок принять адсорбирующее средство

18. При воздействии ионизирующего излучения возникает лучевая болезнь

Радиоактивные металлы занимают значительную часть периодической таблицы Менделеева. Одни о них говорят со страхом, другие с интересом. Данные элементы обладают уникальными свойствами, за которые ценятся научным сообществом, но вредны для человека. Излучение, которое исходит от этих металлов, провоцирует разрушение внутренних органов.

Химические элементы

Содержание

  • Какие элементы относятся к радиоактивным?
  • История открытия
  • Запасы и месторождения
  • Добыча и промышленное получение
  • Свойства и характеристики
    • Уран
    • Радий
    • Плутоний
  • Сферы применения
  • Влияние на организм
  • Общие сведения
  • Подробности
    • Опасность данных веществ
    • Радиационное облучение – необратимый процесс
  • Итоги
  • Лучи Рентгена.
  • Лучи Беккереля.
  • Виды радиоактивных излучений.
  • Бета-распад.
  • Другие виды радиоактивности.
  • Как проходят испытания атомных бомб?
  • Какими могут быть последствия испытаний атомных бомб?

Какие элементы относятся к радиоактивным?

Группа радиоактивных элементов в периодической таблице Менделеева начинается от свинца и заканчивается последней ячейкой. Излучение происходит из-за определенного периода полураспада — преобразования металлического ядра в дочернее. Радиоактивные элементы:

  • уран;
  • плутоний;
  • радий;
  • берклий;
  • торий;
  • нептуний;
  • франций;
  • эйнштейний;
  • технeций.

Среди них присутствуют цветные и черные радиоактивные металлы.

Существуют три вида радиоактивного излучения — альфа, бета, гамма. Они отличаются длиной волны, проникающей способностью. Если альфа излучение может сдержать плотная бумага или картон, то гамма излучение остановит только слой свинца.

Химический элемент нептуний (Фото: Instagram / amurasoap)

История открытия

Открытием радиации человечество обязано прусскому физику Вильгельму Рентгену. В 1895 году он смог увидеть радиоактивное излучение. Благодаря работам этого ученого был разработан рентгеновский аппарат.

Изучение радиоактивности продолжил Анри Беккерель в 1896 году. Этот ученый проводил эксперименты с солями урана. Прорыв в данной области произошел через 2 года. Пьер Кюри получил первый чистый радиоактивный материал — радий. После открытия этого элемента ученый не смог продолжить его изучение, поскольку умер от излучения.

Следующее продвижение в этой области произошло в 1934 году. В этот год ученые смогли синтезировать искусственный радиоактивный изотоп. Сейчас эта область является одной из самых актуальных. Ее изучением занято огромное количество ученых, крупных научных организаций.

Запасы и месторождения

Запасы и месторождения представителей радиоактивной группы:

  1. Уран. Залежи металла в слоях литосферы на толщину 20 км — 1.3х1014 т. Содержание в морской воде — 3 мкг/л. Больше всего урана содержится в кислых породах, содержащих кремний.
  2. Радий. Редкий элемент. За все время было добыто не более 1,5 килограмма чистого радия. Природный радий появляется после распада урана 235 и урана 238.
  3. Плутоний. Из-за отсутствия стабильных изотопов его сложно найти в природе. Изотопы, с длительным периодом полураспада — 239, 244. В природе он встречается в виде соединения PuO2. Его добыча не имеет смысла из-за малого количества.
  4. Торий. Был открыт в 1815 году. Все природные изотопы элемента состоят из этого нуклида. В большом количестве содержится в природе. Самые стабильные изотопы — 232, 230, 229.
  5. Берклий. Некоторые изотопы этого радиоактивного элемента можно получить при облучении урановых, плутониевых руд в ядерных реакторах. Самые стабильные изотопы — 247, 249.

Большинство радиоактивных металлов редко встречаются в природе, добывать их сложно.

Добыча руды (Фото: Instagram / nornickel_official)

Добыча и промышленное получение

В чистом виде естественные радиоактивные металлы найти невозможно. Чаще их синтезируют из урановых руд. Это затратный, трудоемкий процесс, состоящий из нескольких этапов:

  1. Концентрирование. Руду дробят в воде для выделения осадка.
  2. Выщелачивание. Осадок переводится в раствор.
  3. Выделение чистого урана.
  4. Перевод в твердое состояние.

После обработки из тонны руды получается несколько грамм чистого вещества. Проводить подобные процедуры можно только в специальных цехах.

Свойства и характеристики

Знание характеристик радиоактивных металлов поможет выявить уникальные свойства этих элементов, понять, где их лучше применять.

Уран

Свойства:

Уран растворяется в азотной и соляной кислоте, не взаимодействует с щелочами. При нагревании может вступать в реакции с азотом, фосфором.

Химический элемент уран

Радий

Характеристики:

  1. В нормальном состоянии — серебристо-белый металл.
  2. Показатель плотности — 5500 кг/м3.
  3. Атомный номер — 88.
  4. Показатель теплоемкости — Cp0 29 Дж/(моль•К).
  5. Температура плавления — 969°C.
  6. Степень окисления — +2.
  7. Температура кипения — 1500°C.

По химической активности радий можно сравнить с барием. На воздухе быстро окисляется. При соединении с водой возникает бурная реакция с нагреванием жидкости.

Плутоний

Характеристики:

  1. При нормальном состоянии — серебристо-белый металл.
  2. Показатель плотности — 19,82 (25°C, г/см3).
  3. Атомный норме — 94.
  4. Удельное электрическое сопротивление — 150 мкОм·см (при +22 °C).
  5. Температура плавления — 640°C.
  6. Температура кипения — 3235°C.

Вступает в реакцию с водой.

Окисленный плутоний (Фото: Instagram / thoisoi)

Сферы применения

Радиоактивные металлы применяются в разных направлениях. С их помощью проводят эксперименты, изучают влияние на другие материалы, живые организмы. Часто используются для выработки энергии в реакторах.

Влияние на организм

Радиоактивное излучение разрушает внутренние органы. Естественные механизмы защиты организма справляются только с малыми дозами излучения. Когда они становятся большими, развивается лучевая болезнь, повышается риск поражения организма раком.

Радиоактивные металлы обладают уникальными свойствами. Их изучением ученые занимаются постоянно. Исследователи находят новые способы получения металлов, сферы для их применения.

Каждый химический элемент состоит из атомов, а атомы некоторых изотопов имеют способность к расщеплению, в результате чего высвобождается излучение.

В таблице Д.И. Менделеева, все химические элементы, находящиеся после свинца, являются радиоактивными, и, кроме этого, еще прометий и технеций.

Известно более 80 радиоактивных элементов, среди них: стронций, радий, висмут, цезий, франций, германий, полоний. Одна их часть встречается в природе, другая — является творением человека.

Общие сведения

Есть ряд химических элементов, в состав природных смесей которых входит хотя бы один радиоактивный изотоп; среди них: кальций, селен, кадмий, калий, ванадий, цирконий, молибден, индий, рубидий. Вещества, содержащие любые радиоактивные изотопы, относятся к радиоактивным веществам. Длительное время радиоактивные вещества изучались учеными, не подозревающими об их опасности. Однако, последующие смерти научили человечество относиться к ним с огромной осторожностью.

В середине прошлого века произошло два грандиозных по масштабности, противоположных по значимости события:

— атомная бомбардировка японских городов Хиросимы и Нагасаки,

— открытие первой в мире электростанции в г. Обнинске.

Попробуем разобраться какие химические элементы являются радиоактивными.

Первооткрывателем радиоактивности является известный французский ученый Антуан Беккерель. Он ушел из жизни в возрасте 55 лет, но о его заслугах знает весь мир. Его имя носит сама частица радиоактивности и, кроме того, в его честь названы кратеры на Марсе и Луне.

Величайшими учеными были Мария Склодовская-Кюри и ее муж Пьер Кюри, работавшие с радиоактивными веществами. Среди других заслуг этих ученых является открытие радиоактивных элементов: Полония и Радия.

Подробности

Опасность данных веществ

…состоит в том, что они невидны, не имеют запаха либо цвета. Человек может долгое время жить вблизи с источником радиоактивности и даже не подозревать об опасности. Наиболее опасным радиоактивным веществом считается полоний-210. Излучения, исходящие от него, представляют собой светящуюся голубую «ауру». Надо сказать, что светящихся радиоактивных веществ очень мало, полоний-210 один из них. На сегодня наибольшую радиоактивность имеет ливерморий (для распада его изотопа хвати 61 миллисекунды!). Этот факт был выявлен в 2000 году. Еще один опасный представитель радиоактивных металлов- Унунпентий-289 (его время распада составляет 87 миллисекунд). Важно знать, что одно и тоже вещество может не представлять опасности, когда его изотоп стабильный, но может стать и радиоактивным, когда ядра его изотопа находятся на грани разрушения.

Опасным свойством радиоактивных веществ считается тот факт, что они способны перемещаться на большие расстояния от самого источника. Ликвидировать ядерную опасность ни физическим, ни химическим путем невозможно. Радиоактивные вещества могут присутствовать везде: в земле, воде, воздухе, продуктах питания (к примеру, в капусте и свекле содержится наибольшее количество радионуклидов).

Радиоактивные вещества содержатся, в том или ином количестве, в месторождениях полезных ископаемых, в горных породах. К примеру, на территории Западной Сибири размещаются большие залежи Урана и других веществ, которые являются продуктами распада Урана (к примеру, Радон и Радий). В окружающую среду радиоактивные материалы могут попасть в результате деятельности ГРЭС и ТЭЦ (электростанции работают на определенных видах угля). Существуют на нашей планете территории, где наблюдается естественное излучение (к примеру, пляжи Керала в Индии, провинция Гуагдонг в Китае, части территории Бразилии).

Зачастую, радиоактивные вещества присутствуют в сырье, используемом в строительстве, что способствует повышению дозы гамма-излучений в жилых зданиях (к примеру, в составе распространенных строительных материалов: фосфориты, квасцы, щебень содержится большое количество радионуклидов). Нарушение в использовании радиоактивных строительных материалов было выявлено в Екатеринбургской области ст. Костоусово, в Казахстане, Омске.

Радиационное облучение – необратимый процесс

Результаты радиоактивного излучения могут стать заметными спустя значительное время после облучения. Надо сказать, что высокая доза радиации для человека намного опаснее, чем облучение небольшими дозами на протяжении длительного времени. В зависимости от масштабов облучения человек может погибнуть в период от нескольких часов до нескольких месяцев. Однако, нужно отметить, что слабому радиоактивному излучению люди подвергаются постоянно в процессе жизни (к примеру, при рентгене зубов человек получает 3 рад), впрочем, естественный радиационный фон Земли составляет около 0,2 рад в год.

Существует несколько видов радиоактивных излучений, рассмотрим некоторые из них:

— альфа-излучение – наиболее слабое, опасно для человека только в случае, когда частицы непосредственно проникают в тело. Данный вид излучение возможно остановить даже бумажным листом;

— бета-излучение — по сравнению с предыдущим, значительно сильнее. Электроны бета-излучения легче альфа-частиц и способны проникать в человеческую кожу на несколько сантиметров;

— гамма-излучение – его фотоны способны легко проходить через кожу человека к внутренним органам;

— нейтронное излучение — наиболее мощное и опасное в плане проникновения. Данное излучение не встречается в природе, получить его можно вблизи ядерных реакторов.

Радионуклиды, загрязняющие окружающую среду, могут быть результатом деятельности человека:

— ядерные взрывы, применяемые в процессе добычи нефти,

— проведение военных испытаний на полигонах,

— деятельность ядерно-топливных предприятий,

— аварии, происходящие на АЭС,

— использование атомных бомб в процессе боевых действий,

— захоронение радиоактивного материала.

Для множества предприятий, перевозка радиоактивных веществ является частью их деятельности. Осуществляется она в соответствии с правилами, утвержденными Федеральным Законом «Об атомной энергии», строго соблюдая систему безопасности. Таможенный контроль пресекает перевозку через границу запрещенных делящихся (например, Уран-235, Уран-233 и другие) и радиоактивных материалов.

Итоги

Человечество всегда должно помнить неоценимый вклад ученых разных стран в изучение радиоактивности. Благодаря их открытиям, люди получили знания, помогающие спасению жизни и лечению опаснейших болезней, а также, обеспечению энергией разные страны мира. Однако, радиоактивность – очень сложный процесс, который, к сожалению, не всегда может быть подвластен человеку. Поэтому очень важно понимать, что радиоактивные реакции могут помогать человечеству, но использовать их нужно с большой осторожностью, чтобы исключить угрозу экологии и жизни людей.

РАДИОАКТИВНОСТЬ – превращение атомных ядер в другие ядра, сопровождающееся испусканием различных частиц и электромагнитного излучения. Отсюда и название явления: на латыни radio – излучаю, activus – действенный. Это слово ввела Мария Кюри (см. РАДИЙ). При распаде нестабильного ядра – радионуклида из него вылетают с большой скоростью одна или несколько частиц высокой энергии. Поток этих частиц называют радиоактивным излучением или попросту радиацией.

Лучи Рентгена.

Открытие радиоактивности было непосредственно связано с открытием Рентгена. Более того, некоторое время думали, что это один и тот же вид излучения. Конец 19 в. вообще был богат на открытие различного рода не известных до того «излучений». В 1880-е английский физик Джозеф Джон Томсон приступил к изучению элементарных носителей отрицательного заряда, в 1891 ирландский физик Джордж Джонстон Стони (1826–1911) назвал эти частицы электронами. Наконец, в декабре Вильгельм Конрад Рентген сообщил об открытии нового вида лучей, которые он назвал Х-лучами. До сих пор в большинстве стран они так и называются, но в Германии и России принято предложение немецкого биолога Рудольфа Альберта фон Кёлликера (1817–1905) называть лучи рентгеновскими. Эти лучи возникают, когда быстро летящие в вакууме электроны (катодные лучи) сталкиваются с препятствием. Было известно, что при попадании катодных лучей на стекло, оно испускает видимый свет – зеленую люминесценцию. Рентген обнаружил, что одновременно от зеленого пятна на стекле исходят какие-то другие невидимые лучи. Это произошло случайно: то в темной комнате светился находящийся неподалеку экран, покрытый тетрацианоплатинатом бария Ba (раньше его называли платиносинеродистым барием). Это вещество дает яркую желто-зеленую люминесценцию под действием ультрафиолетовых, а также катодных лучей. Но катодные лучи на экран не попадали, и более того, когда прибор был закрыт черной бумагой, экран продолжал светиться. Вскоре Рентген обнаружил, что излучение проходит через многие непрозрачные вещества, вызывает почернение фотопластинки, завернутой в черную бумагу или даже помещенной в металлический футляр. Лучи проходили через очень толстую книгу, через еловую доску толщиной 3 см, через алюминиевую пластину толщиной 1,5 см… Рентген понял возможности своего открытия: «Если держать руку между разрядной трубкой и экраном, – писал он, – то видны темные тени костей на фоне более светлых очертаний руки». Это было первое в истории рентгеноскопическое исследование.

Открытие Рентгена мгновенно облетело весь мир и поразило не только специалистов. В канун 1896 в книжном магазине одного немецкого города была выставлена фотография кисти руки. На ней были видны кости живого человека, а на одном из пальцев – обручальное кольцо. Это была снятая в рентгеновских лучах фотография кисти жены Рентгена. Первое сообщение Рентгена О новом роде лучей было опубликовано в «Отчетах Вюрцбургского физико-медицинского общества» 28 декабря оно было немедленно переведено и опубликовано в разных странах, выходящий в Лондоне самый известный научный журнал «Nature» («Природа») опубликовал статью Рентгена 23 января 1896.

Новые лучи стали исследовать во всем мире, только за один год на эту тему было опубликовано свыше тысячи работ. Несложные по конструкции рентгеновские аппараты появились и в госпиталях: медицинское применение новых лучей было очевидным.

Сейчас рентгеновские лучи широко используются (и не только в медицинских целях) во всем мире.

Лучи Беккереля.

Открытие Рентгена вскоре привело к не менее выдающемуся открытию. Его сделал в 1896 французский физик Антуан Анри Беккерель. Он был 20 января 1896 на заседании Академии, на котором физик и философ Анри Пуанкаре рассказал об открытии Рентгена и продемонстрировал сделанные уже во Франции рентгеновские снимки руки человека. Пуанкаре не ограничился рассказом о новых лучах. Он высказал предположение, что эти лучи связаны с люминесценцией и, возможно, всегда возникают одновременно с этим видом свечения, так что, вероятно, можно обойтись и без катодных лучей. Свечение веществ под действием ультрафиолета – флуоресценция или фосфоресценция (в 19 в. не было строгого разграничения этих понятий) было знакомо Беккерелю: ею занимались и его отец Александр Эдмонд Беккерель (1820–1891), и дед Антуан Сезар Беккерель (1788–1878) – оба физики; физиком стал и сын Антуана Анри Беккереля – Жак, который «по наследству» принял кафедру физики при парижском Музее естественной истории, эту кафедру Беккерели возглавляли 110 лет, с 1838 по 1948.

Беккерель решил проверить, связаны ли лучи Рентгена с флуоресценцией. Яркой желто-зеленой флуоресценцией обладают некоторые соли урана, например, уранилнитрат UO2(NO3)2. Такие вещества были в лаборатории Беккереля, где работал. С препаратами урана работал еще его отец, который показал, что после прекращения действия солнечного света их свечение исчезает очень быстро – менее чем за сотую долю секунды. Однако никто не проверял, сопровождается ли это свечение испусканием каких-то других лучей, способных проходить сквозь непрозрачные материалы, как это было у Рентгена. Именно это после доклада Пуанкаре решил проверить Беккерель. 24 февраля 1896 на еженедельном заседании Академии он рассказал, что беря фотопластинку, завернутую в два слоя плотной черной бумаги, кладя на нее кристаллы двойного сульфата калия-уранила K2UO2(SO4)2·2H2O и выставляя все это на несколько часов на солнечный свет, то после проявления фотопластинки на ней можно видеть несколько размытый контур кристаллов. Если между пластинкой и кристаллами поместить монету или вырезанную из жести фигуру, то после проявления на пластинке появляется четкое изображение этих предметов.

Все это могло свидетельствовать о связи флуоресценции и рентгеновского излучения. Недавно открытые Х-лучи можно получать намного проще – без катодных лучей и необходимых для этого вакуумной трубки и высокого напряжения, но надо было проверить, не оказывается ли, что урановая соль, нагреваясь на солнце, выделяет какой-то газ, который проникает под черную бумагу и действует на фотоэмульсию Чтобы исключить эту возможность, Беккерель проложил между урановой солью и фотопластинкой лист стекла – она все равно засветилась. «Отсюда, – заключил свое краткое сообщение Беккерель, – можно сделать вывод о том, что светящаяся соль испускает лучи, которые проникают через не прозрачную для света черную бумагу и восстанавливают серебряные соли в фотопластинке». Как будто Пуанкаре оказался прав и Х-лучи Рентгена можно получить совсем другим способом.

Беккерель начал ставить множество опытов, чтобы лучше понять условия, при которых появляются лучи, засвечивающие фотопластинку, и исследовать свойства этих лучей. Он помещал между кристаллами и фотопластинкой разные вещества – бумагу, стекло, пластинки алюминия, меди, свинца разной толщины. Результаты получались те же, что и у Рентгена, что также могло служить доводом в пользу сходства обоих излучений. Помимо прямого солнечного света Беккерель освещал соль урана светом, отраженным зеркалом или преломленным призмой. Он получил, что результаты всех прежних опытов никак не были связаны с солнцем; имело значение лишь то, как долго урановая соль находилась вблизи фотопластинки. На следующий день Беккерель доложил об этом на заседании Академии, но вывод он, как потом выяснилось, сделал неверный: он решил, что соль урана, хотя бы раз «заряженная» на свету, способна потом сама длительное время испускать невидимые проникающие лучи.

Беккерель до конца года он опубликовал на эту тему девять статей, в одной из них он писал: «Разные соли урана были помещены в толстостенный свинцовый ящик… Защищенные от действия любых известных излучений, эти вещества продолжали испускать лучи, проходящие через стекло и черную бумагу…, через восемь месяцев».

Эти лучи исходили от любых соединений урана, даже от тех, которые не светятся на солнце. Еще более сильным (примерно в 3,5 раза) оказалось излучение металлического урана. Стало очевидным, что излучение хотя и похоже по некоторым проявлениям на рентгеновское, но обладает большей проникающей способностью и как-то связано с ураном, так что Беккерель стал называть его «урановыми лучами».

Беккерель обнаружил также, что «урановые лучи» ионизируют воздух, делая его проводником электричества. Практически одновременно, в ноябре 1896, английские физики Дж. Дж.Томсон и Эрнест Резерфорд (обнаружили ионизацию воздуха и под действием рентгеновских лучей. Для измерения интенсивности излучения Беккерель использовал электроскоп, в котором легчайшие золотые листочки, подвешенные за концы и заряженные электростатически, отталкиваются и их свободные концы расходятся. Если воздух проводит ток, заряд с листочков стекает и они опадают – тем быстрее, чем выше электропроводность воздуха и, следовательно, больше интенсивность излучения.

Оставался вопрос, каким образом вещество испускает непрерывное и не ослабевающее в течение многих месяцев излучение без подвода энергии от внешнего источника Сам Беккерель писал, что не в состоянии понять, откуда уран получает энергию, которую он непрерывно излучает. По этому поводу выдвигались самые разные гипотезы, иногда довольно фантастические. Например, английский химик и физик Уильям Рамзай писал:»… физики недоумевали, откуда мог бы взяться неисчерпаемый запас энергии в солях урана. Лорд Кельвин склонялся к предположению, что уран служит своего рода западней, которая улавливает ничем другим не обнаруживаемую лучистую энергию, доходящую до нас через пространство, и превращает ее в такую форму, в виде которой она делается способной производить химические действия».

Беккерель не мог ни принять эту гипотезу, ни придумать что-то более правдоподобное, ни отказаться от принципа сохранения энергии. Кончилось тем, что он вообще на некоторое время бросил работу с ураном и занялся расщеплением спектральных линий в магнитном поле. Этот эффект был обнаружен почти одновременно с открытием Беккереля молодым голландским физиком Питером Зееманом и объяснен другим голландцем – Хендриком Антоном Лоренцем.

На этом закончился первый этап исследования радиоактивности. Альберт Эйнштейн сравнил открытие радиоактивности с открытием огня, так как считал, что и огонь и радиоактивность – одинаково крупные вехи в истории цивилизации.

Виды радиоактивных излучений.

Когда в руках исследователей появились мощные источники радиации, в миллионы раз более сильные, чем уран (это были препараты радия, полония, актиния), можно было более подробно ознакомиться со свойствами радиоактивного излучения. В первых исследованиях на эту тему самое активное участие приняли Эрнест Резерфорд супруги Мария и Пьер Кюри, А.Беккерель, многие другие. Прежде всего, была изучена проникающая способность лучей, а также действие на излучение магнитного поля. Оказалось, что излучение неоднородно, а представляет собой смесь «лучей». Пьер Кюри обнаружил, что при действии магнитного поля на излучение радия одни лучи отклоняются, а другие нет. Было известно, что магнитное поле отклоняет только заряженные летящие частицы, причем положительные и отрицательные в разные стороны. По направлению отклонения убедились в том, что отклоняемые b-лучи заряжены отрицательно. Дальнейшие опыты показали, что между катодными и b-лучами нет принципиальной разницы, откуда следовало, что они представляют собой поток электронов.

Отклоняющиеся лучи обладали более сильной способностью проникать через различные материалы, тогда как неотклоняющиеся легко поглощались даже тонкой алюминиевой фольгой – так вело себя, например, излучение нового элемента полония – его излучение не проникало даже сквозь картонные стенки коробки, в которой хранился препарат.

При использовании более сильных магнитов оказалось, что a-лучи тоже отклоняются, только значительно слабее, чем b-лучи, причем в другую сторону. Отсюда следовало, что они заряжены положительно и имеют значительно бóльшую массу (как потом выяснили, масса a-частиц в 7740 раз больше массы электрона). Впервые это явление обнаружили в 1899 А.Беккерель и Ф.Гизель. В дальнейшем выяснилось, что a-частицы представляют собой ядра атомов гелия (нуклид 4Не) с зарядом +2 и массой 4 у.е. (см. УГЛЕРОДНАЯ ЕДИНИЦА.). Когда же в 1900 французский физик Поль Вийар (1860–1934) исследовал более подробно отклонение a- и b-лучей, он обнаружил в излучении радия и третий вид лучей, не отклоняющихся в самых сильных магнитных полях, это открытие вскоре подтвердил и Беккерель. Этот вид излучения, по аналогии с альфа- и бета-лучами, был назван гамма-лучами, обозначение разных излучений первыми буквами греческого алфавита предложил Резерфорд. Гамма-лучи оказались сходными с лучами Рентгена, т.е. они представляют собой электромагнитное излучение, но с более короткими длинами волн и соответственно с большей энергией. Все эти виды радиации описала М.Кюри (см. РАДИЙ) в своей монографии «Радий и радиоактивность» (опубликована в Париже в 1904, русский перевод – 1905). Вместо магнитного поля для «расщепления» радиации можно использовать электрическое поле, только заряженные частицы в нем будут отклоняться не перпендикулярно силовым линиям, а вдоль них – по направлению к отклоняющим пластинам.

Долгое время было неясно, откуда берутся все эти лучи. В течение нескольких десятилетий трудами многих физиков была выяснена природа радиоактивного излучения и его свойства, были открыты новые типы радиоактивности.

Альфа-лучи испускают, главным образом, ядра самых тяжелых и потому менее стабильных атомов (в периодической таблице они расположены после свинца). Эти высокоэнергетичные частицы. Обычно наблюдается несколько групп a-частиц, каждая из которых имеет строго определенную энергию. Так, почти все a-частицы, вылетающие из ядер 226Ra, обладают энергией в 4,78 МэВ (мегаэлектрон-вольт) и небольшая доля a-частиц энергией в 4,60 МэВ. Другой изотоп радия – 221Ra испускает четыре группы a-частиц с энергиями 6,76, 6,67, 6,61 и 6,59 МэВ. Это свидетельствует о наличии в ядрах нескольких энергетических уровней, их разность соответствует энергии излучаемых ядром g-квантов. Известны и «чистые» альфа-излучатели (например, 222Rn).

По формуле E = mu2/2 можно подсчитать скорость a-частиц с определенной энергией. Например, 1 моль a-частиц с Е = 4,78 МэВ имеет энергию (в единицах СИ) Е = 4,78·106 эВ ґ 96500 Дж/(эВ·моль) = 4,61·1011 Дж/моль и массу m = 0,004 кг/моль, откуда u » 15200 км/с, что в десятки тысяч раз больше скорости пистолетной пули. Альфа-частицы обладают самым сильным ионизирующим действием: сталкиваясь с любыми другими атомами в газе, жидкости или твердом теле, они «обдирают» с них электроны, создавая заряженные частицы. При этом a-частицы очень быстро теряют энергию: они задерживаются даже листом бумаги. В воздухе a-излучение радия проходит всего 3,3 см, a-излучение тория – 2,6 см и т.д. В конечном счете потерявшая кинетическую энергию a-частица захватывает два электрона и превращается в атом гелия. Первый потенциал ионизации атома гелия (He – e ® He+) составляет 24,6 эВ, второй (He+ – e ® He+2) – 54,4 эВ, это намного больше, чем у любых других атомов. При захвате электронов a-частицами выделяется огромная энергия (более 7600 кДж/моль), поэтому ни один атом, кроме атомов самого гелия, не в состоянии удержать свои электроны, если по соседству окажется a-частица.

Очень большая кинетическая энергия a-частиц позволяет «увидеть» их невооруженным глазом (или с помощью обычной лупы), впервые это продемонстрировал в 1903 английский физик и химик Уильям Крукс (1832 – 1919. Он приклеил на кончик иглы еле видимую глазом крупинку радиевой соли и укрепил иглу в широкой стеклянной трубке. На одном конце этой трубки, недалеко от кончика иглы, помещалась пластинка, покрытая слоем люминофора (им служил сульфид цинка), а на другом конце было увеличительное стекло. Если в темноте рассматривать люминофор, то видно: все поле зрения усеяно вспыхивающими и сейчас же гаснущими искрами. Каждая искра – это результат удара одной a-частицы. Крукс назвал этот прибор спинтарископом (от греч. spintharis – искра и skopeo – смотрю, наблюдаю). С помощью этого простого метода подсчета a-частиц был выполнен ряд исследований, например, этим способом можно было довольно точно определить постоянную Авогадро (см. АВОГАДРО ЗАКОН).

В ядре протоны и нейтроны удерживаются вместе ядерными силами, Поэтому было непонятно, каким образом альфа-частица, состоящая из двух протонов и двух нейтронов, может покинуть ядро. Ответ дал в 1928 американский физик (эмигрировавший в 1933 из СССР) Джордж (Георгий Антонович) Гамов). По законам квантовой механики a-частицы, как и любые частицы малой массы, обладают волновой природой и потому у них есть некоторая небольшая вероятность оказаться вне ядра, на небольшом (примерно 6·10–12 см) расстоянии от него. Как только это происходит, на частицу начинает действовать с кулоновское отталкивание от очень близко находящегося положительно заряженного ядра.

Альфа-распаду подвержены, основном, тяжелые ядра – их известно более 200, a-частицы испускаются большинством изотопов элементов, следующих за висмутом. Известны ти более легкие альфа-излучатели, в основном, это атомы редкоземельных элементов. Но почему из ядра вылетают именно альфа-частицы, а не отдельные протоны? Качественно это объясняется энергетическим выигрышем при a-распаде (a-частицы – ядра гелия устойчивы). Количественная же теория a-распада была создана лишь в 1980-х, в ее разработке принимали участие и отечественные физики,в их числе Лев Давидович Ландау, Аркадий Бейнусович Мигдал (1911–1991), заведующий кафедрой ядерной физики Воронежского университета Станислав Георгиевич Кадменский с сотрудниками.

Вылет из ядра a-частицы приводит к ядру другого химического элемента, который смещен в периодической таблице на две клетки влево. В качестве примера можно привести превращения семи изотопов полония (заряд ядра 84) в разные изотопы свинца (заряд ядра 82): 218Po ® 214Pb, 214Po ® 210Pb, 210Po ® 206Pb, 211Po ® 207Pb, 215Po ® 211Pb, 212Po ® 208Pb, 216Po ® 212Pb. Изотопы свинца 206Pb 207Pb и 208Pb стабильны, остальные радиоактивны.

Бета-распад.

Бета-распад наблюдается как у тяжелых, так и у легких ядер, например, у трития. Эти легкие частицы (быстрые электроны) обладают более высокой проникающей способностью. Так, в воздухе b-частицы могут пролететь несколько десятков сантиметров, в жидких и твердых веществах – от долей миллиметра до примерно 1 см. В отличие от a-частиц, энергетический спектр b-лучей не дискретный. Энергия вылетающих из ядра электронов может меняться почти от нуля до некоторого максимального значения, характерного для данного радионуклида. Обычно средняя энергия b-частиц намного меньше, чем у a-частиц; например, энергия b-излучения 228Ra составляет 0,04 МэВ. Но бывают и исключения; так b-излучение короткоживущего нуклида 11Ве несет энергию 11,5 МэВ. Долго было неясно, каким образом из одинаковых атомов одного и того же элемента вылетают частицы с разной скоростью. Когда же стало известно понятно строение атома и атомного ядра, появилась новая загадка: откуда вообще берутся вылетающие из ядра b-частицы – ведь в ядре никаких электронов нет. После того как в 1932 английский физик Джеймс Чедвиком открыл нейтрон, отечественные физики Дмитрий Дмитриевич Иваненко (1904–1994) и Игорь Евгеньевич Тамм и независимо немецкий физик Вернер Гейзенберг предположили, что атомные ядра состоят из протонов и нейтронов. В таком случае b-частицы должны образоваться в результате внутриядерного процесса превращения нейтрона в протон и электрон: n ® p + e. Масса нейтрона немного превышает суммарную массу протона и электрона, избыток массы, в соответствии с формулой Эйнштейна E = mc2, дает кинетическую энергию вылетающего из ядра электрона, поэтому b-распад наблюдается, в основном, у ядер с избыточным числом нейтронов. Например, нуклид 226Ra – a-излучатель, а все более тяжелые изотопы радия (227Ra, 228Ra, 229Ra и 230Ra) – b-излучатели.

Оставалось выяснить, почему b-частицы, в отличие от a-частиц, имеют сплошной спектр энергии, это означало, что одни из них обладают очень малой энергией, а другие – очень большой (и при этом движутся со скоростью, близкую к скорости света). Более того, суммарная энергия всех этих электронов (она была измерена с помощью калориметра) оказалась меньше, чем разность энергии исходного ядра и продукта его распада. Снова физики с толкнулись с «нарушением» закона сохранения энергии: часть энергии исходного ядра непонятно куда исчезала. Незыблемый физический закон «спас» в 1931 швейцарский физик Вольфганг Паули, который предположил, что при b-распаде из ядра вылетают две частицы: электрон и гипотетическая нейтральная частица – нейтрино с почти нулевой массой, которая и уносит избыток энергии. Непрерывный спектр b-излучения объясняется распределением энергии между электронами и этой частицей. Нейтрино (как потом оказалось, при b-распаде образуется так называемое электронное антинейтрино ) очень слабо взаимодействует с веществом (например, легко пронзает по диаметру земной шар и даже огромную звезду) и потому долго не обнаруживалось – экспериментально свободные нейтрино были зарегистрированы только в 1956 г. Таким образом, уточненная схема бета-распада такова: n ® p + . Количественную теорию b-распада на основе представлений Паули о нейтрино разработал в 1933 итальянский физик Энрико Ферми, он же предложил название нейтрино (по-итальянски «нейтрончик»).

Превращение нейтрона в протон при b-распаде практически не изменяет массу нуклида, но увеличивает заряд ядра на единицу. Следовательно, образуется новый элемент, смещенный в периодической таблице на одну клетку вправо, например: ® , ® , ® и т.д. (одновременно из ядра вылетают электрон и антинейтрино).

Другие виды радиоактивности.

Помимо альфа- и бета-распадов, известны и другие типы самопроизвольных радиоактивных превращений. В 1938 американский физик Луис Уолтер Альварес открыл третий тип радиоактивного превращения – электронный захват (К-захват). В этом случае ядро захватывает электрон с ближайшей к нему энергетической оболочки (К-оболочки). При взаимодействии электрона с протоном образуется нейтрон, а из ядра вылетает нейтрино, уносящее избыток энергии. Превращение протона в нейтрон не изменяет массу нуклида, но уменьшает заряд ядра на единицу. Следовательно, образуется новый элемент, находящийся в периодической таблице на одну клетку левее, например, из получается стабильный нуклид (именно на этом примере Альварес открыл этот тип радиоактивности).

При К-захвате в электронной оболочке атома на место исчезнувшего электрона «спускается» электрон с более высокого энергетического уровня, излишек энергии либо выделяется в виде рентгеновского излучения, либо расходуется на вылет из атома более слабо связанных одного или нескольких электронов – так называемых оже-электронов, по имени французского физика Пьера Оже (1899–1993), открывшего этот эффект в 1923 (для выбивания внутренних электронов он использовал ионизирующее излучение).

В 1940 Георгий Николаевич Флеров (1913–1990) и Константин Антонович Петржак (1907–1998) на примере урана открыли самопроизвольное (спонтанное) деление, при котором нестабильное ядро распадается на два более легких ядра, массы которых различаются не очень сильно, например: ® + + 2n. Этот тип распада наблюдается только у урана и более тяжелых элементов – всего более чем у 50 нуклидов. В случае урана спонтанное деление происходит очень медленно: среднее время жизни атома 238U составляет 6,5 миллиарда лет. В 1938 немецкий физик и химик Отто Ган, австрийский радиохимик и физик Лизе Мейтнер (в ее честь назван элемент Mt – мейтнерий) и немецкий физикохимик Фриц Штрассман (1902–1980) обнаружили, что при бомбардировке нейтронами ядра урана делятся на осколки, причем вылетевшие из ядер нейтроны способны вызвать деление соседних ядер урана, что приводит к цепной реакции). Этот процесс сопровождается выделением огромной (по сравнению с химическими реакциями) энергии, что привело к созданию ядерного оружия и строительству АЭС.

В 1934 дочь Марии Кюри Ирэн Жолио-Кюри и ее муж Фредерик Жолио-Кюри открыли позитронный распад. В этом процессе один из протонов ядра превращается в нейтрон и антиэлектрон (позитрон) – частицу с той же массой, но положительно заряженную; одновременно из ядра вылетает нейтрино: p ® n + e+ + 238. Масса ядра при этом не изменяется, а смещение происходит, отличие от b–-распада, влево, b+-распад характерен для ядер с избытком протонов (так называемые нейтронодефицитные ядра). Так, тяжелые изотопы кислорода 19О, 20О и 21О b–-активны, а его легкие изотопы 14О и 15О b+-активны, например: 14O ® 14N + e+ + 238. Как античастицы, позитроны сразу же уничтожаются (аннигилируют) при встрече с электронами с образованием двух g-квантов. Позитронный распад часто конкурирует с К-захватом.

В 1982 была открыта протонная радиоактивность: испускание ядром протона (это возможно лишь для некоторых искусственно полученных ядер, обладающих избыточной энергией). В 1960 физико-химик Виталий Иосифович Гольданский (1923–2001) теоретически предсказал двухпротонную радиоактивность: выбрасывание ядром двух протонов со спаренными спинами. Впервые она наблюдалась в 1970. Очень редко наблюдается и двухнейтронная радиоактивность (обнаружена в 1979).

В 1984 была открыта кластерная радиоактивность (от англ. cluster – гроздь, рой). При этом, в отличие от спонтанного деления, ядро распадается на осколки с сильно отличающимися массами, например, из тяжелого ядра вылетают ядра с массами от 14 до 34. Кластерный распад также наблюдается очень редко, и это в течение длительного времени затрудняло его обнаружение.

Некоторые ядра способны распадаться по разным направлениям. Например, 221Rn на 80% распадается с испусканием b-частиц и на 20% – a-частиц, многие изотопы редкоземельных элементов (137Pr, 141Nd, 141Pm, 142Sm и др.) распадаются либо путем электронного захвата, либо с испусканием позитрона. Различные виды радиоактивных излучений часто (но не всегда) сопровождаются g-излучением. Происходит это потому, что образующееся ядро может обладать избыточной энергией, от которой оно освобождается путем испускания гамма-квантов. Энергия g-излучения лежит в широких пределах, так, при распаде 226Ra она равна 0,186 МэВ, а при распаде 11Ве достигает 8 МэВ.

Илья Леенсон

Научные открытия, которые позволили использовать радиоактивные элементы не только в теории, но и на практике, позволили человеку создать мощнейшие реакторы и новейшее ядерное оружие. Вместе с тем, несмотря на значительные преимущества таких открытий, человечество постоянно вносит свой губительный вклад в окружающую среду. Недавние исследования Маршалловых островов в Тихом океане доказали, что они по-прежнему являются значительнее радиоактивнее, чем Чернобыль и Фукусима, даже не смотря на то, что прошло уже более 60 лет после проведения на них ядерных испытаний. Результаты тестирования почвы на некоторых островах показали, что уровень наличия плутония — 239 и 240 в 10-1000 раз выше, чем на Фукусиме, где землетрясение и цунами привели к разрушению ядерных реакторов.

Уровень Плутония — 239 и 240 на атоллах Бикини и Эниветок, на которых были проведены испытания радиоактивного оружия, в 10 раз выше уровня в Чернобыльской зоне отчуждения

Как проходят испытания атомных бомб?

Сброс атомных бомб на японские города Хиросима и Нагасаки в 1945 году послужил фактическим завершением Второй мировой войны. Несмотря на это, Соединенные Штаты Америки были заинтересованы в продолжении испытаний радиоактивного оружия, из-за чего некоторое количество таких испытаний выпало на Маршалловы острова, которые представлены в виде цепочки островов между Гавайями и Филиппинами.

Первым двум бомбам было дано название Able и Baker, которые в последующем были испытаны на атолле Бикини в 1946 году, успевших положить начало для 12-летнего периода ядерных испытаний на атоллах Бикини и Эниветок, в результате которых было испытано 67 единиц ядерного оружия.

Читайте также: Самые радиоактивные места на Земле

На атолле Эниветок в 1951 году было проведено первое в истории испытание водородной бомбы, которое носило кодовое название Ivy Mike. В последующем было проведено крупнейшее испытание водородной бомбы на атолле Бикини в 1954 году. «Героем” дня стала бомба, которая была в 1000 раз мощнее, чем атомный Little Boy, уничтоживший Хиросиму.

Ученые утверждают, что помимо загрязнения атоллов Бикини и Эниветок, последствия ядерных испытаний также повлияли и на людей, живущих на атоллах Ронжелап и Утирик, которые также входят в состав Маршалловых островов.

Какими могут быть последствия испытаний атомных бомб?

Команда ученых из Колумбийского университета опубликовала результаты проведенного ряда исследований, которые проводились на атоллах северных Маршалловых островов: Бикини, Эниветок, Ронгелап и Утирик. Внешние уровни гамма-излучения были значительно повышены на атолле Бикини и Эниветок, а также на островах Энжеби и Наен, по сравнению с островами на юге Маршалловых островов, которые использовали в качестве контрольных точек.

В результате исследований ученые выяснили, что радиационный фон значительно превышает максимально допустимый уровень, который был утвержден Соединенными штатами и Республикой Маршалловых островов в 1990 годах

Как сказано в источнике Proceedings of the National Academy of Sciences, ученые обнаружили, что на островах Рунит и Энджеби на атолле Эниветок, а также на островах Бикини и Наен в почве содержится высокая концентрация некоторых радиоактивных изотопов, при этом у всех четырех островов был превышен уровень радиоактивного плутония, количество которого было значительно выше, чем было обнаружено в Фукусиме и Чернобыле.

Кстати говоря, а вы знали о существовании Чернобыльской водки?

В ходе проводимых исследований ученые работали и с профессиональными дайверами, которые собрали 130 образцов почвы из кратера Castle Bravo на атолле Бикини. В результате было обнаружено, что уровень изотопов плутония — 239 и 240, америция — 241 и висмута — 207 был значительно выше, чем уровни тех же веществ, которые были обнаружены на других Маршалловых островах. Исследователи считают, что такие измерения радиоактивного загрязнения важны для оценки воздействия на океанические экосистемы.

Маршалловы острова спустя 60 лет все еще являются местом с высоким уровнем радиационного заражения, где, несмотря ни на что, все еще живут люди

Ученые убеждены, что для защиты местного населения, постоянно подвергающегося вредному радиационному воздействию, правительству страны необходимо предпринять дополнительные меры по информированию людей, которые проживают на Маршалловых островах. Согласно новейшим исследованиям местной растительности, фрукты и овощи, выращенные на зараженных островах, обладают повышенным уровнем радиационного загрязнения, ставя под угрозу жизнь местного населения островов.

Post navigation

Previous Post:

Местные органы самоуправления

Next Post:

Система образования финляндии

Добавить комментарий Отменить ответ

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Свежие записи

  • Валюта словении
  • 258 УК
  • Страховой премии
  • Среднесрочные цели
  • Лотерея как организовать
  • Лизинг минусы
  • Судебная система в РФ схема
  • Что такое перестрахование (простым языком)?
  • Техника безопасности при стрельбе из автомата
  • Продажа акций НДФЛ
  • Законы полиции
  • Кто такой грузчик?
  • Эвакуационные выходы
  • Что такое токинг?
  • Как стать работником?
  • Структуры права
  • Ссудный капитал и ссудный процент
  • Оборотные средства
  • Химчистка испортила вещь
  • Социально гигиенический мониторинг

Рубрики

  • Бизнес

Страницы

  • Карта сайта
© 2020 Жизнь в стиле V.I.P. | WordPress Theme by Superb Themes